Oregon IPM Center Phenology/Degree-Day Model Implementation – June 10, 2025

Wheat stem sawfly Cephus cinctus (Hymenoptera: Cephidae)

Implementation of the CSU model published April 2025

Egg

- Larva Adam Osterholzer and Gabriel Alnajjar, CSU
- Adult Ken Gray Photo Collection

Source 1. Vieira, H.V., B. Z. Bradford, A. Osterholzer, E. S. Peirce, D. Cockrell, F. Peairs, K. Frost, R. Groves, and P. Nachappa. 2025. A new growing degree-day phenology model for wheat stem sawfly (Hymenoptera: Cephidae) in Colorado wheat fields. PlosOne. https://doi.org/10.1371/journal.pone.0320497

Fig. 3. GLM/GAM derived WSS emergence phenology model.

Fig. 4. Probit fit of the cumulative proportion of total WSS captures over cumulative growing DD.

Source 2. Perez-Mendoze, J. and D. K. Weaver. 2006. Temperature and relative humidity effects on postdiapause larval development and adult emergence in three populations of wheat stem sawfly (Hymenoptera: Cephidae). Environ. Entomol. 35:1222-1231.

Table 2. Post Diapause development vs. temperature

- Take average of results from 3 locations and 3 RH ranges (drop outliers which developed more slowly than average)

- Solve LDT and DD requirements based on linear regression with additional forcing point to reach 10C LDT (lower developmental temperature) as used by source #1

				Days post	-diapause d	levelopmen	t from larv	a to adult				
	Temp. C	1/days	Days	Pop 1 (Co	nrad MT)		Pop. 2 (O	pheim MT)		Pop. 3 (A	msterdam	MT)
forcing:	11.15	0.0001	Avg.	RH 43%	RH 53-61	RH 75-76	RH 43%	RH 53-61	RH 75-76	RH 43%	RH 53-61	RH 75-76
	15	0.023	42.8	41.3	40.9	43.3	45.3	46.5	44.4	39.2	39.7	44.5
	20	0.042	24.0) 23.5	22.1	22.2			32.5	22	23.8	22
	25	0.054	18.5	5 17.7	19.6	16.1				19.5	19.5	18.7
	30)	18.9	19.3	18.3	16.6	23.6	22.5		17.9	16.5	16.8
DDC:	slope intercept 1/slope	0.0038241 -0.038241 261.50092	F									

x-intercep-b/a 10.000144 50.00026 Rsq 0.964013 Wheat stem sawfly w/forcing x-intercept Wheat stem sawfly - no forcing x-intercept 0.06 0.060 f(x) = .0038 x - .0382f(x) = 0.0031 x - 0.02161 0.05 $\hat{R}^2 = .9640$ 0.050 $\hat{R}^2 = 0.9878$ 0.04 0.040 1/days 0.03 1/days 0.030 0.02 0.020

Results: dropping 30C and 5 outlier points (at 20 & 25C), adding a point to force a 10C LDT results in rather good fit (Rsq=0.96), supporting the CSU selection of this LDT. Note a slightly lower LDT of 8.88C (48F) provides a better fit of Rsq=0.99. Further investigation for establishment of the best LDT appears warranted.

30

35

0.010

0.000

14

16

18

20

22

Temp. C

24

26

28

30

32

The resulting DDC10 of 261 for post-diapause development provides some validation of the CSU peak emergence value 224 DDC

20

Temp. C

25

15

lodel Summary										
Species: Cephus cinctus										
Common Name: Wheat s	Common Name: Wheat stem sawfly									
Country of Origin, data fr	om: Colorado (Vieira et al. 202	25)								
Pest of: Wheat										
Validation Status: Develo	Validation Status: Developed and validated in Eastern Colorado									
	Celsius	Fahrenheit								
Lower Threshold:	10.0	50.0								
Upper Threshold:	30.0	86.0								
Calculation Method:	Single sine									
Model Start:	1 Jan									
Degree-Day Requirement	s Celsius	Fahrenheit								
First adult flight	148	266								
Peak adult flight	224	403								
End of adult flight	354	637								

0.01

0

10